Raas+Ginseng:
Resource Allocation in the Cloud

Orna Agmon Ben-Yehuda
Muli Ben-Yehuda

Eyal Posener

Ahuva Mu’alem

Assaf Schuster

Cloud wars - A Multi-Billion

Market

Google |-

Amazon

Cloud Provider

MS Azure |- D D

O

I | | L 1 1

Apr

May Jun Jul Aug Sep Oct
Price reduction date (month in 2012)

RAAS+Ginseng

Nov

The next thing after 1aaS?

laaS Trends:

+ Fine time granularity

+ Fine resource granularity

+ Tiered service levels

«~ Market-driven resource pricing

Solution:

RaaS - Resource as a Service cloud
[Hotcloud 2012, CACM 2014]

RAAS+Ginseng

Trend: Shrinking Duration of Rent

+» 3 years: hardware purchase
+» Months: web hosting
+»Hours: EC2 on-demand (pay-as-you-go), 2006
+» 5 minutes: CloudSigma, EC2 Spot Instances, 2009
+» 3 minute: GridSpot, 2012
+ 1 minute: ProfitBricks, 2012,
Google App+Compute Engines, 2013

+~ Analogies: Car rental, telecom

Extrapolation: Duration of Rent

+ Clients want to pay for resources only when they
need them.

+ Clients need extra resources to be allocated within
seconds (e.g., when slashdotted)

+~ We extrapolate that cloud resources will be rented
by the second.

Trend: Flexible Resource
Granularity

«~ Most cloud providers sell fixed bundles, called
“instance types” or “server sizes”.

«» Amazon allows adding and removing “network
instances” and “block instances”, thus
dynamically changing I/O resources, 2012.

+» CloudSigma, 2010, Gridspot and ProfitBricks,
2012, offer clients to compose a flexible bundle.

+» Google App Engine charges I/O op’s by the
million + progressive network prices.

RAAS+Ginseng

Extrapolation: Resource
Granularity

«~ As physical servers grow up, an entire server
may be too much for a single client.

+» Renting a fixed bundle waste client budget.

+~ We extrapolate that clients will rent a basic
bundle, and dynamically supplement it with
resources in fine granularity.

CPU (GH2z): [oon) 8.25
Core-GHz/Hour: USD 0.0225
Memory (GB): -0) 15.34

GB/Hour: USD 0.0293
RAAS+Ginseng

Trend: Service Level Agreements

Most cloud providers account for rigid
availability only (“the machine is accessible”).

DI D

GoGrid and CloudSigma provide guarantees in
terms of minimal actual delivered capacity
(latency, packet loss and jitter). ’

RAAS+Ginseng

Extrapolation: Service Level
Agreements

We extrapolate that:

+ Client pressure for efficiency will drive
providers to supply levels of quality service:
“For 90% of the time” or just “for 80% of the

time”.

+» Low-QoS clients will be willing to pay less
than high-QoS clients.

RAAS+Ginseng

Economic Forces Acting on the
Provider

+ The provider must keep spare resources for
rich, high-QoS clients.

+ The provider can let poor, low-QoS clients use
the spare resources, subject to availability.

+ The provider must mix low QoS clients with
high QoS clients. E—

* “Robin Hood in reverse”

11

Economic Forces Leading to the
RaaS Cloud

+ Both clients and providers must continuously
decide what to buy and when to buy it.

+ The fine rent time granularity and bundie
flexibility makes decision-making a core function.

« Both providers and clients will use economic
agent software to handle decision making and
economic interaction.)

,{_, ’Jf

The RaaS Architecture

Host

Guest

Host Agent

,_)I Decision Maker

~_T| Communicator |<_|—_I_)| Communicator

Y

| Resource Controller I

Application

Strategic Agent

-

Perf(resource)

Value(perf)

Strategy Adviser

>

Resource

RAASTGinseng

13

The Guest Agent

+» Changes the desired amount of
resources on a second-by-second basis.

+» Negotiates
<« Trades in the futures market.
+ Sublets.

+ |s not mandatory: dumb clients are still supported, with ?
the same inefficiency of today’s laaS clouds. '

RAAS+Ginseng §

The Host Agent: Market Driven
Resource Allocation

>

Has a view of the global picture (total system
resources, change predictions)

Attempts to increase over-commitment when QoS is
maintained (airlines analogy)

Dictates economic mechanisms and protocols.
Allocates resources according to agreements.

Verifies that high-QoS clients are satisfied, possibly
at the expense of low-QoS clients.

RAAS+Ginseng 15

Summary - Resource Allocation

+ Divide resources among selfish black-box guests?
+» Give more to guests who would benefit more.

+» How can the host compare guest benefits from
using additional resources?

+ Auction theory to the rescue ©

+ Lots of issues ®
“»Partial information
“*Theory is limited, open problems
- Does not cover real-life issues

* repeated games, leftovers, learning, manipulation, spying
“*Theory involves highly-complex optimizations
“*Additional dimensions, e.g. split/merge decisions
<+ Attacks, collusions, side channels, privacy issues
“*Many more...

RAAS+Ginseng 19

Ginseng: Market-Driven
Memory Allocation vee 204

Host

Ginseng

~» Auctioneer

Guest

Application
Stratagic Agent)

Perflmemory,load) I‘(J
Vp(perf) I

Strategy Adviser

Communicator

-rl Communicator } I—

L

Balloon Controller

k Balloon Driver I

RAAS+Ginseng

20

Designing a Good Allocation
Mechanism

+ Vickrey-Clarke-Groves auctions

+ Guest bids with a valuation of the good — how much it is worth,
subjectively.

+ Auctioneer finds the allocation that maximizes the social
welfare SW.

+ The auctioneer charges guests according to the exclusion-
compensation principle: the difference between the SW when
they participate to the SW when they do not.

+~ Prices are NOT uniform. Prices may drop to a minimal price
(possibly zero) if there are extra resources

A VCG auction is truthful: guests bid their real types, no matter
what other guests do.

RAAS+Ginseng

21

Designing a Bandwidth Allocation
Mechanism: PSP

+ Lazar and Semret (1999): progressive second price
auction (PSP).

+~ Guests bid with their required quantity and unit-price
= Not with their full types

+~ Guests are sorted by bid price to be allocated with
desired quantities.

+~ Guests are charged by the exclusion-compensation
principle.

RAAS+Ginseng

22

Multi-bid auctions

<+ Maille and Tuffin 2004 extended PSP to multi-bid

auctions
= PSP converges to the same SW

* Truthfully (same£-Nash equilibrium)

+ Not really needed in dynamic systems requiring
repeated auction rounds

+» High computational overhead on auctioneer

+ Guests need to know in advance full valuation

function for full range
= Harder to explore working points that are seemingly not

optimal

\\\\\\\

RAAS+Ginseng

23

PSP is not suited for the Cloud

«~ The PSP protocol requires guests to hear and
analyze how other guests bid.

«~ Spoiler - our MPSP protocol is based on secret bids,
so that spying on neighbor guests in an MPSP
auction is limited.

RAAS+Ginseng 24

The MPSP Auction Protocol

The host sets up each guest with a base memory. Auction
rounds repeat every 12 seconds:

+» The host announces the auctionable memory to guests
(time =0)

+» The guests may bid for memory (time =0 — 3)

+ The host collects bids and decides on an allocation and
payments (time=3 — 4)

+» The host announces the auction results (time = 4)

+ The host makes allocation changes (time = 12)

Time, sec
0 3 4 Guests 12
Begin prepare New

for announced auction begin
Changgﬁgﬁcinseng 25

auction

Elastic Memory Apps

+ Qut-of-the-box apps come with fixed cache size, heap size
(e.g. JVM), data structure size

«~ APIs required to dynamic change app memory signature

«~ App should be able to measure performance as a function

Uses lucene to do a text search of keywords over a corpus of data comprising the works of Shakespeare and the King James Bible
@, 0.00085 . L ! ! L L L L : L : 2400
+ Not always necessary
0.0008

to change the app. | | A
Can do with libraries. e T

0007 - A VA= GAVI - 2000
£ 000 -

n - 1800
g

£ 00006 |

u + X
= 0.00055 - SRR ST - 1600
T L - ® . T R a 2 o
0.0005 - ; YT Lt
+ i N .3 ¢
‘e L1400
° RS ¥u g
0.00045 *: LOMNGAL (.l
YN ALY
L3 ¢
0.0004 T T T T T T T T T T T 1200
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Heap Size (MB)
Converged Average —— M&ﬁﬁ'mng Converged Average —— Minimum ~ » 26

Bezier - Converged Average —— Converged Scatter Bezier - Converged Average —— Madimum =

Time (ms)

Moving memory between guests in
a virtualized system

inflate

guest memory guest memory guest memory

balloon .

swap out swap in

Figure 2. Inflating the balloon increases memory pressure and
prompts the guest to reclaim memory, typically by swapping out
some of its pages to its virtual disk. Deflating relieves the memory

pressure. (Reproduced from E}.)
[82] Carl A. Waldspurger. Memory resource management in

Vmware ESX server. In USENIX Symposium on Operating
Systems Design & Implementation (OSDI), volume 36, pages
181-194, 2002.

PSP is not suited for Memory
Allocation

Memory is only beneficial if you use it long enough
(e.g., allowing cache warmup)

+ |ln case of a tie between guests, none of the PSP
guests wins
= Motivate bidders to break ties
= Assumes full knowledge

» MPSP: Ties are broken in favor of the guest
currently holding the memory

= plus other ex-ante fair tie-breaking mechanisms so memory
does not go unused when it is needed

RAAS+Ginseng 30

PSP assumes Concavity and
Monotonicity

+ PSP assumes concave monotonically rising
valuation functions, and a divisible good.

+ Clients may sometimes value memory thus, in smart
applications:

5

Performance [Khits/s]

0
400 800 1200 1600 2000 2400
Allocation [MB]

Figure: Elastic-memory memcached

RAAS+Ginseng

31

PSP is not suited for Memory
Allocation

+ PSP assumes concave monotonically-rising
valuation functions, and a divisible good.

+ But legacy applications usually have a step function
performance graph, which is not concave:

2.5

2.0

1.5

Performance [Khits/s]

0.5

0.0
300 400 500 600 700 800 900
Allocation [MB]

- Off-the-Shelf memcached

RAAS+Ginseng

32

PSP is not suited for Memory
Allocation

+ PSP assumes concave monotonically rising
valuation functions, and a divisible good.

» Sometimes, especially when performance is
measured on-line, the performance is not even
monotonically rising

@@ load: 10 A-A load: 4
> > load: 8 ¥ load: 2| -—
<] {] load: E- @9 load: 1

Performance [Khits/s]
DG = W]) Y LN h

|sng

- Elastic Memory memcached, iAo optimal environment >’

TOMCAT, DaCappo

1iTime (ms)

Ferformace -

Q000102

Q000101

Q.000L00

(LRI

(LOKEIYH

0.000097

QLO0D09E

0.0000595

TOMCAT {large waotkload) - Dacapo Denchrmark
Fluns & sel ol yueries againsl a Tomcal server relrieviog and veriDing the resulling webpapes

I 1 1 I I 1 I I 1 10600
10400
F o 10400
1O
- L0200
Fo L0100
TOKEIN
- Q00
HHIK
T T T T T T T T T 9704
0 S0 Lo 150 200 250 300 350 400 450 500 E&0 B0 650 T
Heap Size (MB)
Cronverged Average Standard desdafion 1 = Crnverged Average —w— “Winimmm s
Dezier - Comvergod Avorage Converged Scatter : [ezier - Convorged Avorage Maximum o

Figure: TOMCAT benchmark, from the Da(:appo suite

Thime (ms)

34

The MPSP Protocol Supports
Memory Ranges

+ The memory progressive second price auction
(MPSP) supports non-concave, non-monotonically
rising functions:

« A bid is composed of a single unit-price and
multiple memory ranges (q, r, p).

+ Bidding a price which is the slope of the valuation
graph is almost always the best strategy.
" p=average unit price

4.0
3.5 : 3.5
30f - b AN e 3.0
S 25 S 25}
S 2.0 S 2.0}
= I
2 15F 2 15
-~ 1.0} : , ~ 1.0
0.5 SN 05f Lok
0 I | OO}—RN:FW‘—‘ H 35
TANN [=FaYa] 1200 T&00 99000 2aA00 a0y 1PN oOnNnnNn ADAM 1ECANR SO ™ AN

The MPSP Allocation Choice

The PSP allocation prefers higher unit prices,

assuming there are no forbidden ranges:
Unit Price

10

Available Memory

A
|
|

PSP

Indivisible

> 36

0 12 3 4 5 6 7 ™ogandQ 7

The MPSP Allocation Choice

Free disposal of auction results supports forbidden
ranges, but is inefficient:

Unit Price

10

Available Memory

A
J Free
I disposal
1

: A |

: 1 ‘ Indivisible

. ; 37
0 12 3 456 7 8 9 10 pomorw IR 0 1 2 3 4 5 6 7 8 9 10 " P

The MPSP Allocation Choice

The MPSP allocation finds the allocation with the
highest social welfare under the forbidden ranges
constraints: Unit Price

Unit Price 1 0

10

Available Memory

A
| Free

| disposal

2 |

1 Indivisible ‘
0 1 2 3 4
nit Price

Available Memory

A
|
|
|

5 6 7 8 9 10 Memory

Indivisible

0 1 2 3 4 Baqgme® 8 9 10 >

PSP is not suited for Memory Allocation

+ PSP assumes no overhead in transfer of resources
= When finding best SW allocation
= Makes sense for bandwidth
* But not for memor

https://www.usenix.org/legacy/event/osdi02/tech/full_papers/waldspurger/waldspurger_html/node6.html
20 =

o
S
.]
L28 L0 255

192 24
VM Ske (MB)

1

Throughput (MB/sec)

Figure 2: Balloon Performance. Throughput of single Linux VM running dbench
with 40 clients. The black bars plot the performance when the VM 1s configured with
main memory sizes ranging from 128 MB to 256 MB. The gray bars plot the

performance of the same VM configured with 256 MB, ballooned down to the 39
specified size.

Affine Maximizers

« A social choice function f assigning allocation a is called
affine maximizerif (. v) cargmax,(c, + D wy(a))

+ Let T be affine maximizer. If the payment for the good is
computed using the exclusion-compensation principle,
then the mechanism (f,p;.... P,) is incentive compatible.

+ Robert’s theorem: there are no incentive compatible
mechanisms except for those based on affine maximizers.

RAAS+Ginseng 41

Guest finds a bid b=(q,r,p)

+ Find estimated payment for every g by online-
learning previous results
= All previously received allocations a=(p’,q’)
= Closer in value g’provides more information
Closer in time allocation a provides more information
Reserved price pminis a lower-bound
A recent pmax-rejectedis an upper-bound
- By exclusion-compensation principle
+ Valuation pis known for every g
= For forbidden ranges a lower-bound is known

«~ Get b=(q,r,p)by scanning
for g obtaining highest -
utility for guest

4.0
3.5 :
30f e
2.5}
2.0
15},
1.0 : o
TS S SO y——" . Y
a.0 0.0 1 L iH

400 800 1200 IGQXA%OE&Z‘%OO 400 800 1200 1600 2000, 3400

‘ nseng
Allocation (MB) Allocation (MB)

Valuation (V)

Summary - Positive results

+ MPSP maximizes the SW for every guest
= Even for non-concave non-monotonically rising valuations
= By solving optimization problem with affine maximizer, and
= Inspecting recursively all 0-1 allocations of forbidden ranges

+ Bidding the true valuation of a memory quantity is the
best course of action for the guest when:

= It asks for a specific quantity (not a range), or

= The valuation function is concave, monotonically rising, or

= The system is at a steady state.

RAAS+Ginseng 43

Experimental Evaluation:
Non-Concave Valuation Functions

8 -0 load: 10] . | 9
0adq: i
TH>1 toad:s |17 Al 81~
E6_q-=:]lcad:6 o AR E?-
T, A load: 4 | {F}6_
'E'5'H|cad:2 :5—
24 84__-__‘_1___5_.-.&}3:1:10_
O O | + |b> > load: 8
%3 r—:u-?’_""E'I.-"""'E'ﬂ::]{lIcad:ﬁ '
S2F - Ty S2F - {aAoada |
1 1__________:_Y—chad:2 |
0 > 0 ' " |@-@ load: 1
e s W
0.6 1.0 14 1.8 2.2 0.6 1.0 14 18 2.2

Memory [GB] Memory [GB]

(c) MemoryConsumer (square of (d) Dynamic Memcached (par-
prformance) tially linear)

W N\
W\ Xl
A0 A\

A\ A\
B\ \\
W\)

RAAS+Ginseng

Experimental Evaluation:
Dynamic-Memory Benchmark

B3 static V¥ hinted-host-swapping >=X Upper Bound
©-0 ginseng A—A hinted-mom @@ Ginseng Simulation
45— ! T ! 1 ! ! |
i ,i-. ~ IV)
4.0 P W~
- —~
w35 P Be! N K~ .

Number of VMs

Figure: MemoryConsumer, valuation is square of performances

Experimental Evaluation:
Dynamic-Memory Memcached

@@ static V¥ hinted-host-swapping >=X Upper Bound
Q-0 ginseng A-A hinted-mom @@ Ginseng Simulation
3.5 ——F -3 - 5 % |
O
3.0 [— \]

— O

@ 2.5 \ m

52.0F \)

o \

=15} x15.8 -

© \

5 1.0 \
0.5 \ -
0.0 - —

6 7 8 9 10 11 12 13

Number of VMs

Figure: Memcached, first guest valuation«is:piecewise linear

Conclusion

<« The Resource-as-a-Service cloud is the future cloud
model.

+ Ginseng is an efficient prototype implementation of

RaaS$S for memory. It improves the social welfare by
x6.2-x15.8.

+ Future work
<2 Full multi-resource RaaS machine: the RaaS software stack
“*Allocation and migration algorithms

<*Better dynamic game-theoretic mechanisms
“+*Security and Privacy

RAAS+Ginseng 47

Questions?

Contact: assaf@cs.technion.ac.il

Thank You!

« Ginseng.: Market-Driven Memory Allocation. Orna Agmon Ben-
Yehuda, Eyal Posener, Muli Ben-Yehuda, Assaf Schuster, Ahuva

Mu’alem. VEE 2014.

« The rise of RaaS: the Resource as a Service Cloud. Orna Agmon
Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, Dan Tsafrir.
Communications of the ACM. Forthcoming, July 2014.

« The Resource-as-a-Service (RaaS) Cloud. Orna Agmon Ben-
Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir.
HotCloud, June 2012.

RAAS+Ginseng

48

End - do not go beyond this slide!!

Experimental Evaluation:
Performance is comparable

B3 static V¥ hinted-host-swapping >X Upper Bound
©-0 ginseng A—A hinted-mom @@ Ginseng Simulation

2.5

N
o
!

=
un
I
al
|

Performance [10* hits]

U.D | | | | | |]

6 7 8 Q 10 11 12 13
Number of VMs

Figure: Memcached, first guest valuationsigspiecewise linear s

Offline profiling is good enough
6

- Theoretical

+
L, 1 T | |

0 1 2 3 4 5 6
Predicted [khits/s]

Figure: Memcached RA4S+Cinseng

Actual [khits/s]
O = N W H U

51

Bandwidth allocation

[=] Guest 11i !E Guest EE !E Guest N
3 s 3 | & 3
~ Premcior | | } Predictor i | } Predictor
= lefiovers i i history leftovers i i i lefiovers
v || ¥ ! | ¥
Adisor i i Advisor i i Advisor
S N o
Host
¥
Auctioneer

k

get usage/change allocations
’

05 Resourcce

allocate

RAAS+Ginseng

52

Avrora, Batik, Fop, Luindex and
SUNFLOW

» The above benchmarks were too short and
were hardly affected by changes in the JVM
heap size.

» Sunflow crushed multiple times on our
machine.

RAAS+Ginseng 53

Tudor Salomie’s
Java Balloon

Tudor Salomie’s Java Balloon

Young Generation
Survivors New object Reservation

 Grow/Shrink »

To &From| Eden Space | Balloon Space
Spaces

Old Generation

Permanent Generation

Parallel Scavenge Garbage

Cotlegkomanent generation holds
class metadata.

» The young generation holds
recently-created objects, and
those that have survived a few
garbage collections.

» Objects that survive longer are
moved to the old generation.

» The young generation is also split
into Eden and survivor spaces.

» Spaces are bounded by start and
end addresses, and all allocated
memory sits between the start
and top address, which is
incremented as objects are
allocated.

» Collection compacts space
between the start and top
addresses, removing holes and
moving objects to other spaces.

RAAS+Ginseng 55

Tudor Salomie’s Java Balloon

Young Generation
Survivors New object Reservation

 Grow/Shrink »

To &From| Eden Space | Balloon Space
Spaces

Old Generation

Permanent Generation

Balloon Space

4

The balloon space in the young
generation can grow and increase the
pressure on the Eden space when
necessary, or contract and reduce the
pressure.

In order to resize the spaces
composin% the heap, we need to
compact them and prevent any other
operations during ballooning.

For this reason, the ballooning
operation is performed at the same
time as a full garbage collection.

Before returning from a full collection,
we perform all outstanding ballooning
operations.

This means that the cost for
ballooning operations in the JVM is
influenced by the time needed to
perform a garbage collection.

RAAS+Ginseng 56

Dacapo
Benchmark

Performance graphs for different JVM
heap sizes

1The DaCapo-9.1Z2-bach benchmark
suite, released in 2009, consists of

theo following.benchmarks. ..coomoe

Batik: produces a number of Scalable Vector Graphics (SVG) images based on the unit
tests in Apache Batik

» Eclipse: executes some of the (non-gui) jdt performance tests for the Eclipse IDE
» Fop: takes an XSL-FO file, parses it and formats it, generating a PDF file.

» H2: executes aJDBCbench like in-memory benchmark, executing a number of
transactions against a model of a banking application, replacmg the hsqgldb benchmark

» Jython: inteprets a the pybench Python benchmark

» Luindex: Uses lucene to indexes a set of documents; the works of Shakespeare and the
King James Bible

» Lusearch: Uses lucene to do a text search of keywords over a corpus of data comprising
the works of Shakespeare and the King James Bible

» Pmd: analyzes a set of Java classes for a range of source code problems
» Sunflow: renders a set of images using ray tracing

» Tomcat: runs a set of queries against a Tomcat server retrieving and verifying the
resulting webpages

» Tradebeans: runs the daytrader benchmark via a Java Beans to a GERONIMO backend with
an in memory h2 as the underlying database

» Tradesoap: runs the daytrader benchmark via a SOAP to a GERONIMO backend with in
memory h2 as the underlying database

» Xalan: transforms XML documents into HTML

RAAS+Ginseng 58

0.00009

JYTHON (large workload) - Dacapo Benchmark
Inteprets a the pybench Python benchmark

0.00009

0.00009

0.00009 1

0.00009 \

0.00008 - .
3
/|
I

0.00008 -

Performace - 1/Time (ms)
../E

0.00008 - / i
0.00008 - 1/ -
0.00008 -

0.00007

0.00007 | ‘ | ‘
150 200

250 300 350 400 450 500 550

Heap Size (MB)

Standard Deviation +——=—
Wmesaso o] Scatter

Converged Average —x—
Bezier - Converged +Ginseng

700

14000

13500

13000

12500

12000

11500

11000

10500

Time (ms)

59

LUSEARCH (large workload) - Dacapo Benchmark
Uses lucene to do a text search of keywords over a corpus of data comprising the works of Shakespeare and the King James Bible

0.00085 : : : : :
0.0008 - :
i ‘A"?“ ~
;] X ‘A“r “vr { \
0.00075 -+ : ,A-- 7 i
: Pl
i -
Ll k
; ALY A
- 0.0007 - \ m 1 N\, i
B ! i
' \ o ’
v \ ' “. N
£ 0.00065 - O A
é b ' [? ’r <y
v L P4 I
U
: 0.0006 - | ..
g)‘\ 0ty
a ' 4 | i]
A | AREEE SO -
0.00055] \;‘\ .
4 ' i "1 a g
i s 3o a
0,0005 - Y : ‘ At g0 :
/ ‘." b, o] ! o)
{ !n* T[:]“?m e -
I" * 1 4 W“'.h “‘ g o m 8] B m 0 g
0.00045 -+ bt e DRDPITEEIN TR T KN 2
. i i ‘n | f ‘\"nrnL 1
x
0.0004 T I T T I T I I T I T I T
100 150 200 250 300 350 400 450 500 550 600 650 700
Heap Size (MB)
Standard Deviation +—s— Converged Average —+— Minimum
o0 0 Scatter Bezier - Converge g& nseng Maximum

2400

2200

2000

1800

1600

1400

1200

Time (ms)

60

Performace - 1/Time (ms)

0.00006

0.00005

0.00005

0.00005

0.00005

0.00005

0.00004

0.00004

0.00004

0.00004

TRADESOAP (large workload) - Dacapo Benchmark
Runs the daytrader benchmark via a SOAP to a GERONIMO backend with in memory h2 as the underlying database

| | |
AN NN
-‘_ A |, il 7 T RN _
Al e /
‘.." \V‘v "r \
Ilﬂf"'
- -""
[\ |
9
/"1{
: L
LR S
Noal 7o Tes
'.‘z ‘93:! T??Em r
4 : ! [E E ‘\-- Efl ; T
'a ‘;‘=|| ‘:Em[']ﬂ]li] 3 n o]
¢ T T N ey rf[i]m v [i] - T T - .
“‘: H |: i "““4& L‘AA‘[] "”u WT [
T T T Y T NG NG NG AL LA i
; Coer et e e T
4 @ 4 ¢ I L
[¢ ¢ *
\ \ T T T \ T T T T
200 250 300 350 400 450 500 550 600 650 700
Heap Size (MB)
Standard Deviation —s— Converged Average Grs Minimum
WEResoce o4 Scatter Bezier - Converged §Ginseng Maximum o

27000

26000

25000

24000

23000

22000

21000

20000

19000

18000

17000

Time (ms)

61

XALAN (large workload) - Dacapo Benchmark
Transforms XML documents into HTML

0.00019 8500
0.00018 ?
- 8000
N
0.00017 ~ A .
AN
R \ AT Y - 7500
:Ei ds “" V
£ 0.00016 }'r
: :
| ' - 7000
¢ }N/
£ 0.00015 - N i
5) e
5 L :
& . .
, i 50 - 6500
0.00014 - Lo " | : I
AN B K L LRI
|1::='=? g gt @
: NGt i
P] [[}
. ; ' b v ‘e - 6000
0.00013 1 Cp TN AN T
e LY TIRoENL
s M : ! ¢ I
150 200 250 300 350 400 450 500 550 600 650 700
Heap Size (MB)
Standard Deviation —s— Converged Average —=— Minimum -
WBMeioro od Scatter Bezier-ConvquedR e gecwg Maximum o

Time (ms)

TOMCAT (large workload) - Dacapo Benchmark
Runs a set of queries against a Tomcat server retrieving and verifying the resulting webpages

0.000102 ! ! ! ! ! ! 10600
m | Iy b s
0.000101 ‘“
' VIt o M A A ‘
’ ' “l A A AWA v/ U - 10400
AT AT
0,000100 -]' N Y" [! \
R ‘ - 10300
£
o]
E 0.000099 - o <
S g
: £
2] -
g 0.000098 - v :]] i] 10100 =
"‘g ? o, ; I g ! 0 B V7 T i : o ’] vorog m
o TR i 4 K e S
‘vA.A AVe IR A 4T A N TR T T A 1
. AVER givi i‘ P " ! ' o
0.000097 - NV T Vv‘“ AI\AA SV
! o o SN LS ' t-i‘ . I 'm a
' ": ! -i n_ ! "' i' ;' " {7 li
N T Y A Pt TR RN e N e 9900
' be bt . ;o : o 0 . A) “'
0.000096 - : et ' : R
fo - %0
0000095 | | | | | | | 9700
150 200 250 300 350 400 450 500 550 600 650 700
Heap Size (MB)
Standard Deviation —s— Converged Average —=— Minimum -
WBMeioro od Scatter Bezier-ConvquedR e gecwg Maximum o 63

H2 (large workload) - Dacapo Benchmark

Executes a JDBCbench-like in-memory benchmark, executing a number of transactions against a model of a banking application, replacing the hsqldb benchmark

0.00004 ! ! ! ! ' ' ' 55000
il \ T,
w4 AT A AR A A
' ’ VY N TN V V VV - 50000
0.00003 - \ |/ \
l
0,003 - , “ .. 45000
g ;
:
= 0.00003
S
. | ~ 40000
O
E 0.00003 -
RS
g
0.00002 - ~ 35000
0.00002 - ITRAT . ! : ol o
o] o o mBag g o ? B [’] oI m ?
~ ol "T" = T HW 4”___AA. 30000
g w ! Valkih T N
! | ! ' ° ' T i e aa 0 |
0.00002 8 s [: : ¢ ‘l- , b 5 *
0.00002 ‘ ‘ ‘ ‘ ‘ | | | | | ‘ 25000
450 500 550 600 650 700 750 800 850 900 950 1000
Heap Size (MB)
Standard Deviation —s— Converged Average Grs Minimum
EReiccod Scatter Bezier - Converged §Ginseng Maximum o

Time (ms)

64

ECLIPSE (large workload) - Dacapo Benchmark
Executes some of the (non-gui) jdt performance tests for the Eclipse IDE

0000020 ‘ ‘ ‘ 64000
: A
1 A
0.000019 - ‘ i A A A VY - 62000
WAV T
j ‘Ir‘ N " ¥
B ’
' | i
0000019 - | “ .,-' - 60000
I
_r}' “' 1
@ BVAY
f ! ’; \/
2 0.000018 - \ 1 41 - 58000
S e ”’\f g
: Ny ” :
2] e
2 0.000018 - N - 56000
g Ve .
8 A m 0, |
o} / (O i
| - ‘\ _ B
el & o g
0.000017 - / y “ Tan's . - 54000
4) ter Uy : e
’/ \"\ : o i 0ggt o o ' o B B
| I WI.L [E]‘[F 5l mmmf] ;m .
4 2} ' u] [¥ [o] [a
0000017 - ; 1. o N AL ‘w‘*" ‘] S M : . r 52000
J : 13 & ¥y ,Au[" .h;_” N, 'y L
A . b¥i AV, "‘.'YJ ‘ o3 XN i i NG
A : Trell Pt N
H 4 # & *
0000016 T T T I I T T T T T T T I I T T T 50000
25 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Heap Size (MB)
Standard Deviation —s— Converged Averaée —x— Minimum - 65

ieiare od Scatter Bezier-ConvquedR egeCinseng Maximum o

PMD (large workload) - Dacapo Benchmark
Analyzes a set of Java classes for a range of source code problems

0.0004 : '

0.00038 -

0.00036 ~

0.00034 -

0.00032 -

Performace - 1/Time (ms)

0.0003 ~

0.00028 ~ /W ’{quf

0.00026 -

0.00024 T I T T I T I I T I T

150 200 250 300 350 400 450 500 550
Heap Size (MB)

Standard Deviation +—s— Converged Average —*—
iorood Scatter Bezier - Converge g@wg

600

650

Minimum
Maximum

700

o

a

4200

4000

3800

3600

3400

3200

3000

2800

2600

2400

2200

Time (ms)

66

0.00005

0.00005

0.00005

0.00005

0.00005

0.00005

0.00005

Performace - 1/Time (ms)

0.00005

0.00004

0.00004

0.00004

TRADEBEANS (large workload) - Dacapo Benchmark
Runs the daytrader benchmark via a Java Beans to a GERONIMO backend with an in memory h2 as the underlying database

| | | | | |
/N ‘.'* I\ ! i
I ‘Lr A ‘k i/ \ \r‘l ;l‘/
o/ Allt n ‘l N \/ V I
LAY w
I I T I T I T T I T I T I I T
250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Heap Size (MB)
Standard Deviation —s— Converged Average —x— Minimum
EReiccod Scatter Bezier - Converged §Ginseng Maximum o

23000

22000

21000

20000

19000

18000

17000

16000

15000

14000

Time (ms)

67

RAAS+Ginseng

68

