
Orna Agmon Ben-Yehuda

Muli Ben-Yehuda

Eyal Posener

Ahuva Mu’alem

Assaf Schuster

RAAS+Ginseng 1

RAAS+Ginseng 2

IaaS Trends:

Fine time granularity

Fine resource granularity

Tiered service levels

Market-driven resource pricing

Solution:

RaaS – Resource as a Service cloud
[Hotcloud 2012, CACM 2014]

RAAS+Ginseng 3

3 years: hardware purchase

Months: web hosting

Hours: EC2 on-demand (pay-as-you-go), 2006

5 minutes: CloudSigma, EC2 Spot Instances, 2009

3 minute: GridSpot, 2012

1 minute: ProfitBricks, 2012,

Google App+Compute Engines, 2013

Analogies: Car rental, telecom

RAAS+Ginseng 4

 Clients want to pay for resources only when they

need them.

 Clients need extra resources to be allocated within

seconds (e.g., when slashdotted)

 We extrapolate that cloud resources will be rented

by the second.

RAAS+Ginseng 5

Most cloud providers sell fixed bundles, called

“instance types” or “server sizes”.

Amazon allows adding and removing “network

instances” and “block instances”, thus

dynamically changing I/O resources, 2012.

CloudSigma, 2010, Gridspot and ProfitBricks,

2012, offer clients to compose a flexible bundle.

Google App Engine charges I/O op’s by the

million + progressive network prices.

RAAS+Ginseng 6

As physical servers grow up, an entire server

may be too much for a single client.

Renting a fixed bundle waste client budget.

We extrapolate that clients will rent a basic

bundle, and dynamically supplement it with

resources in fine granularity.

RAAS+Ginseng 7

Most cloud providers account for rigid

availability only (“the machine is accessible”).

GoGrid and CloudSigma provide guarantees in

terms of minimal actual delivered capacity

(latency, packet loss and jitter).

RAAS+Ginseng 8

We extrapolate that:

Client pressure for efficiency will drive

providers to supply levels of quality service:

“For 90% of the time” or just “for 80% of the

time”.

Low-QoS clients will be willing to pay less

than high-QoS clients.

RAAS+Ginseng 9

The provider must keep spare resources for

rich, high-QoS clients.

The provider can let poor, low-QoS clients use

the spare resources, subject to availability.

The provider must mix low QoS clients with

high QoS clients.
• “Robin Hood in reverse”

RAAS+Ginseng 11

Both clients and providers must continuously

decide what to buy and when to buy it.

The fine rent time granularity and bundle

flexibility makes decision-making a core function.

Both providers and clients will use economic

agent software to handle decision making and

economic interaction.

RAAS+Ginseng 12

RAAS+Ginseng 13

Changes the desired amount of

resources on a second-by-second basis.

Negotiates

Trades in the futures market.

Sublets.

 Is not mandatory: dumb clients are still supported, with

the same inefficiency of today’s IaaS clouds.

RAAS+Ginseng 14

 Has a view of the global picture (total system

resources, change predictions)

 Attempts to increase over-commitment when QoS is

maintained (airlines analogy)

 Dictates economic mechanisms and protocols.

 Allocates resources according to agreements.

 Verifies that high-QoS clients are satisfied, possibly

at the expense of low-QoS clients.

RAAS+Ginseng 15

Divide resources among selfish black-box guests?
Give more to guests who would benefit more.
How can the host compare guest benefits from

using additional resources?
Auction theory to the rescue 
Lots of issues 
Partial information
Theory is limited, open problems
• Does not cover real-life issues

• repeated games, leftovers, learning, manipulation, spying

Theory involves highly-complex optimizations
Additional dimensions, e.g. split/merge decisions
Attacks, collusions, side channels, privacy issues
Many more…

RAAS+Ginseng 19

RAAS+Ginseng 20

 Vickrey-Clarke-Groves auctions

 Guest bids with a valuation of the good – how much it is worth,

subjectively.

 Auctioneer finds the allocation that maximizes the social

welfare SW.

 The auctioneer charges guests according to the exclusion-

compensation principle: the difference between the SW when

they participate to the SW when they do not.

 Prices are NOT uniform. Prices may drop to a minimal price

(possibly zero) if there are extra resources

A VCG auction is truthful: guests bid their real types, no matter

what other guests do.

RAAS+Ginseng 21

 Lazar and Semret (1999): progressive second price

auction (PSP).

 Guests bid with their required quantity and unit-price
 Not with their full types

 Guests are sorted by bid price to be allocated with

desired quantities.

 Guests are charged by the exclusion-compensation

principle.

RAAS+Ginseng 22

 Maille and Tuffin 2004 extended PSP to multi-bid

auctions
 PSP converges to the same SW

 Truthfully (same -Nash equilibrium)

 Not really needed in dynamic systems requiring

repeated auction rounds

 High computational overhead on auctioneer

 Guests need to know in advance full valuation

function for full range
 Harder to explore working points that are seemingly not

optimal

RAAS+Ginseng 23



 The PSP protocol requires guests to hear and

analyze how other guests bid.

 Spoiler - our MPSP protocol is based on secret bids,

so that spying on neighbor guests in an MPSP

auction is limited.

RAAS+Ginseng 24

The host sets up each guest with a base memory. Auction

rounds repeat every 12 seconds:

 The host announces the auctionable memory to guests

(time = 0)

 The guests may bid for memory (time = 0 → 3)

 The host collects bids and decides on an allocation and

payments (time = 3 → 4)

 The host announces the auction results (time = 4)

 The host makes allocation changes (time = 12)

0
Begin
auction

3 4 12
New
auction begin

Time, sec

Guests
prepare
for announced
changesRAAS+Ginseng 25

 Out-of-the-box apps come with fixed cache size, heap size

(e.g. JVM), data structure size

 APIs required to dynamic change app memory signature

 App should be able to measure performance as a function

of memory

 Not always necessary

to change the app.

Can do with libraries.

RAAS+Ginseng 26

RAAS+Ginseng 27

Memory is only beneficial if you use it long enough
(e.g., allowing cache warmup)

 In case of a tie between guests, none of the PSP
guests wins
 Motivate bidders to break ties

 Assumes full knowledge

 MPSP: Ties are broken in favor of the guest
currently holding the memory
 plus other ex-ante fair tie-breaking mechanisms so memory

does not go unused when it is needed

RAAS+Ginseng 30

 PSP assumes concave monotonically rising

valuation functions, and a divisible good.

 Clients may sometimes value memory thus, in smart

applications:

RAAS+Ginseng 31

 PSP assumes concave monotonically-rising

valuation functions, and a divisible good.

 But legacy applications usually have a step function

performance graph, which is not concave:

RAAS+Ginseng 32

 PSP assumes concave monotonically rising

valuation functions, and a divisible good.

 Sometimes, especially when performance is

measured on-line, the performance is not even

monotonically rising

RAAS+Ginseng 33

RAAS+Ginseng 34

 The memory progressive second price auction

(MPSP) supports non-concave, non-monotonically

rising functions:

 A bid is composed of a single unit-price and

multiple memory ranges (q, r, p).

 Bidding a price which is the slope of the valuation

graph is almost always the best strategy.
 p = average unit price

RAAS+Ginseng 35

The PSP allocation prefers higher unit prices,

assuming there are no forbidden ranges:

PSP

RAAS+Ginseng 36

Free disposal of auction results supports forbidden

ranges, but is inefficient:

PSP

Free
disposal

RAAS+Ginseng 37

The MPSP allocation finds the allocation with the

highest social welfare under the forbidden ranges

constraints:

Free
disposal

PSP

MPSP

RAAS+Ginseng 38

 PSP assumes no overhead in transfer of resources
 When finding best SW allocation

 Makes sense for bandwidth

• But not for memory

RAAS+Ginseng 39

https://www.usenix.org/legacy/event/osdi02/tech/full_papers/waldspurger/waldspurger_html/node6.html

 A social choice function assigning allocation is called

affine maximizer if

 Let be affine maximizer. If the payment for the good is

computed using the exclusion-compensation principle,

then the mechanism is incentive compatible.

 Robert’s theorem: there are no incentive compatible

mechanisms except for those based on affine maximizers.

RAAS+Ginseng 41

),...,,(21 ppf

f

))((maxarg),...,(1 avwcvvf iiiaan 

f

a

 Find estimated payment for every q by online-
learning previous results
 All previously received allocations a=(p’,q’)
 Closer in value q’ provides more information

 Closer in time allocation a provides more information

 Reserved price pmin is a lower-bound

 A recent pmax-rejected is an upper-bound

• By exclusion-compensation principle

 Valuation p is known for every q
 For forbidden ranges a lower-bound is known

 Get b=(q,r,p) by scanning

for q obtaining highest

utility for guest

RAAS+Ginseng 42

 MPSP maximizes the SW for every guest
 Even for non-concave non-monotonically rising valuations

 By solving optimization problem with affine maximizer, and

 Inspecting recursively all 0-1 allocations of forbidden ranges

 Bidding the true valuation of a memory quantity is the

best course of action for the guest when:
 It asks for a specific quantity (not a range), or

 The valuation function is concave, monotonically rising, or

 The system is at a steady state.

RAAS+Ginseng 43

RAAS+Ginseng 44

×6.2

RAAS+Ginseng 45

×15.8

RAAS+Ginseng 46

 The Resource-as-a-Service cloud is the future cloud

model.

 Ginseng is an efficient prototype implementation of

RaaS for memory. It improves the social welfare by

×6.2 -×15.8.

 Future work
Full multi-resource RaaS machine: the RaaS software stack

Allocation and migration algorithms

Better dynamic game-theoretic mechanisms

Security and Privacy

RAAS+Ginseng 47

Contact: assaf@cs.technion.ac.il

Thank You!

 Ginseng: Market-Driven Memory Allocation. Orna Agmon Ben-
Yehuda, Eyal Posener, Muli Ben-Yehuda, Assaf Schuster, Ahuva
Mu’alem. VEE 2014.

 The rise of RaaS: the Resource as a Service Cloud. Orna Agmon
Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, Dan Tsafrir.
Communications of the ACM. Forthcoming, July 2014.

 The Resource-as-a-Service (RaaS) Cloud. Orna Agmon Ben-
Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir.
HotCloud, June 2012.

RAAS+Ginseng 48

RAAS+Ginseng 49

RAAS+Ginseng 50

RAAS+Ginseng 51

RAAS+Ginseng 52

 The above benchmarks were too short and
were hardly affected by changes in the JVM
heap size.

 Sunflow crushed multiple times on our
machine.

RAAS+Ginseng 53

RAAS+Ginseng 54

 The permanent generation holds
class metadata.

 The young generation holds
recently-created objects, and
those that have survived a few
garbage collections.

 Objects that survive longer are
moved to the old generation.

 The young generation is also split
into Eden and survivor spaces.

 Spaces are bounded by start and
end addresses, and all allocated
memory sits between the start
and top address, which is
incremented as objects are
allocated.

 Collection compacts space
between the start and top
addresses, removing holes and
moving objects to other spaces.

Parallel Scavenge Garbage
Collector

RAAS+Ginseng 55

 The balloon space in the young
generation can grow and increase the
pressure on the Eden space when
necessary, or contract and reduce the
pressure.

 In order to resize the spaces
composing the heap, we need to
compact them and prevent any other
operations during ballooning.

 For this reason, the ballooning
operation is performed at the same
time as a full garbage collection.

 Before returning from a full collection,
we perform all outstanding ballooning
operations.

 This means that the cost for
ballooning operations in the JVM is
influenced by the time needed to
perform a garbage collection.

Balloon Space

RAAS+Ginseng 56

Performance graphs for different JVM
heap sizes

RAAS+Ginseng 57

 Avrora: simulates a number of programs run on a grid of AVR microcontrollers
 Batik: produces a number of Scalable Vector Graphics (SVG) images based on the unit

tests in Apache Batik
 Eclipse: executes some of the (non-gui) jdt performance tests for the Eclipse IDE
 Fop: takes an XSL-FO file, parses it and formats it, generating a PDF file.
 H2: executes a JDBCbench-like in-memory benchmark, executing a number of

transactions against a model of a banking application, replacing the hsqldb benchmark
 Jython: inteprets a the pybench Python benchmark
 Luindex: Uses lucene to indexes a set of documents; the works of Shakespeare and the

King James Bible
 Lusearch: Uses lucene to do a text search of keywords over a corpus of data comprising

the works of Shakespeare and the King James Bible
 Pmd: analyzes a set of Java classes for a range of source code problems
 Sunflow: renders a set of images using ray tracing
 Tomcat: runs a set of queries against a Tomcat server retrieving and verifying the

resulting webpages
 Tradebeans: runs the daytrader benchmark via a Java Beans to a GERONIMO backend with

an in memory h2 as the underlying database
 Tradesoap: runs the daytrader benchmark via a SOAP to a GERONIMO backend with in

memory h2 as the underlying database

 Xalan: transforms XML documents into HTML

RAAS+Ginseng 58

RAAS+Ginseng 59

RAAS+Ginseng 60

RAAS+Ginseng 61

RAAS+Ginseng 62

RAAS+Ginseng 63

RAAS+Ginseng 64

RAAS+Ginseng 65

RAAS+Ginseng 66

RAAS+Ginseng 67



RAAS+Ginseng 68

