
Orna Agmon Ben-Yehuda

Muli Ben-Yehuda

Eyal Posener

Ahuva Mu’alem

Assaf Schuster

RAAS+Ginseng 1

RAAS+Ginseng 2

IaaS Trends:

Fine time granularity

Fine resource granularity

Tiered service levels

Market-driven resource pricing

Solution:

RaaS – Resource as a Service cloud
[Hotcloud 2012, CACM 2014]

RAAS+Ginseng 3

3 years: hardware purchase

Months: web hosting

Hours: EC2 on-demand (pay-as-you-go), 2006

5 minutes: CloudSigma, EC2 Spot Instances, 2009

3 minute: GridSpot, 2012

1 minute: ProfitBricks, 2012,

Google App+Compute Engines, 2013

Analogies: Car rental, telecom

RAAS+Ginseng 4

 Clients want to pay for resources only when they

need them.

 Clients need extra resources to be allocated within

seconds (e.g., when slashdotted)

 We extrapolate that cloud resources will be rented

by the second.

RAAS+Ginseng 5

Most cloud providers sell fixed bundles, called

“instance types” or “server sizes”.

Amazon allows adding and removing “network

instances” and “block instances”, thus

dynamically changing I/O resources, 2012.

CloudSigma, 2010, Gridspot and ProfitBricks,

2012, offer clients to compose a flexible bundle.

Google App Engine charges I/O op’s by the

million + progressive network prices.

RAAS+Ginseng 6

As physical servers grow up, an entire server

may be too much for a single client.

Renting a fixed bundle waste client budget.

We extrapolate that clients will rent a basic

bundle, and dynamically supplement it with

resources in fine granularity.

RAAS+Ginseng 7

Most cloud providers account for rigid

availability only (“the machine is accessible”).

GoGrid and CloudSigma provide guarantees in

terms of minimal actual delivered capacity

(latency, packet loss and jitter).

RAAS+Ginseng 8

We extrapolate that:

Client pressure for efficiency will drive

providers to supply levels of quality service:

“For 90% of the time” or just “for 80% of the

time”.

Low-QoS clients will be willing to pay less

than high-QoS clients.

RAAS+Ginseng 9

The provider must keep spare resources for

rich, high-QoS clients.

The provider can let poor, low-QoS clients use

the spare resources, subject to availability.

The provider must mix low QoS clients with

high QoS clients.
• “Robin Hood in reverse”

RAAS+Ginseng 11

Both clients and providers must continuously

decide what to buy and when to buy it.

The fine rent time granularity and bundle

flexibility makes decision-making a core function.

Both providers and clients will use economic

agent software to handle decision making and

economic interaction.

RAAS+Ginseng 12

RAAS+Ginseng 13

Changes the desired amount of

resources on a second-by-second basis.

Negotiates

Trades in the futures market.

Sublets.

 Is not mandatory: dumb clients are still supported, with

the same inefficiency of today’s IaaS clouds.

RAAS+Ginseng 14

 Has a view of the global picture (total system

resources, change predictions)

 Attempts to increase over-commitment when QoS is

maintained (airlines analogy)

 Dictates economic mechanisms and protocols.

 Allocates resources according to agreements.

 Verifies that high-QoS clients are satisfied, possibly

at the expense of low-QoS clients.

RAAS+Ginseng 15

Divide resources among selfish black-box guests?
Give more to guests who would benefit more.
How can the host compare guest benefits from

using additional resources?
Auction theory to the rescue
Lots of issues
Partial information
Theory is limited, open problems
• Does not cover real-life issues

• repeated games, leftovers, learning, manipulation, spying

Theory involves highly-complex optimizations
Additional dimensions, e.g. split/merge decisions
Attacks, collusions, side channels, privacy issues
Many more…

RAAS+Ginseng 19

RAAS+Ginseng 20

 Vickrey-Clarke-Groves auctions

 Guest bids with a valuation of the good – how much it is worth,

subjectively.

 Auctioneer finds the allocation that maximizes the social

welfare SW.

 The auctioneer charges guests according to the exclusion-

compensation principle: the difference between the SW when

they participate to the SW when they do not.

 Prices are NOT uniform. Prices may drop to a minimal price

(possibly zero) if there are extra resources

A VCG auction is truthful: guests bid their real types, no matter

what other guests do.

RAAS+Ginseng 21

 Lazar and Semret (1999): progressive second price

auction (PSP).

 Guests bid with their required quantity and unit-price
 Not with their full types

 Guests are sorted by bid price to be allocated with

desired quantities.

 Guests are charged by the exclusion-compensation

principle.

RAAS+Ginseng 22

 Maille and Tuffin 2004 extended PSP to multi-bid

auctions
 PSP converges to the same SW

 Truthfully (same -Nash equilibrium)

 Not really needed in dynamic systems requiring

repeated auction rounds

 High computational overhead on auctioneer

 Guests need to know in advance full valuation

function for full range
 Harder to explore working points that are seemingly not

optimal

RAAS+Ginseng 23

 The PSP protocol requires guests to hear and

analyze how other guests bid.

 Spoiler - our MPSP protocol is based on secret bids,

so that spying on neighbor guests in an MPSP

auction is limited.

RAAS+Ginseng 24

The host sets up each guest with a base memory. Auction

rounds repeat every 12 seconds:

 The host announces the auctionable memory to guests

(time = 0)

 The guests may bid for memory (time = 0 → 3)

 The host collects bids and decides on an allocation and

payments (time = 3 → 4)

 The host announces the auction results (time = 4)

 The host makes allocation changes (time = 12)

0
Begin
auction

3 4 12
New
auction begin

Time, sec

Guests
prepare
for announced
changesRAAS+Ginseng 25

 Out-of-the-box apps come with fixed cache size, heap size

(e.g. JVM), data structure size

 APIs required to dynamic change app memory signature

 App should be able to measure performance as a function

of memory

 Not always necessary

to change the app.

Can do with libraries.

RAAS+Ginseng 26

RAAS+Ginseng 27

Memory is only beneficial if you use it long enough
(e.g., allowing cache warmup)

 In case of a tie between guests, none of the PSP
guests wins
 Motivate bidders to break ties

 Assumes full knowledge

 MPSP: Ties are broken in favor of the guest
currently holding the memory
 plus other ex-ante fair tie-breaking mechanisms so memory

does not go unused when it is needed

RAAS+Ginseng 30

 PSP assumes concave monotonically rising

valuation functions, and a divisible good.

 Clients may sometimes value memory thus, in smart

applications:

RAAS+Ginseng 31

 PSP assumes concave monotonically-rising

valuation functions, and a divisible good.

 But legacy applications usually have a step function

performance graph, which is not concave:

RAAS+Ginseng 32

 PSP assumes concave monotonically rising

valuation functions, and a divisible good.

 Sometimes, especially when performance is

measured on-line, the performance is not even

monotonically rising

RAAS+Ginseng 33

RAAS+Ginseng 34

 The memory progressive second price auction

(MPSP) supports non-concave, non-monotonically

rising functions:

 A bid is composed of a single unit-price and

multiple memory ranges (q, r, p).

 Bidding a price which is the slope of the valuation

graph is almost always the best strategy.
 p = average unit price

RAAS+Ginseng 35

The PSP allocation prefers higher unit prices,

assuming there are no forbidden ranges:

PSP

RAAS+Ginseng 36

Free disposal of auction results supports forbidden

ranges, but is inefficient:

PSP

Free
disposal

RAAS+Ginseng 37

The MPSP allocation finds the allocation with the

highest social welfare under the forbidden ranges

constraints:

Free
disposal

PSP

MPSP

RAAS+Ginseng 38

 PSP assumes no overhead in transfer of resources
 When finding best SW allocation

 Makes sense for bandwidth

• But not for memory

RAAS+Ginseng 39

https://www.usenix.org/legacy/event/osdi02/tech/full_papers/waldspurger/waldspurger_html/node6.html

 A social choice function assigning allocation is called

affine maximizer if

 Let be affine maximizer. If the payment for the good is

computed using the exclusion-compensation principle,

then the mechanism is incentive compatible.

 Robert’s theorem: there are no incentive compatible

mechanisms except for those based on affine maximizers.

RAAS+Ginseng 41

),...,,(21 ppf

f

))((maxarg),...,(1 avwcvvf iiiaan

f

a

 Find estimated payment for every q by online-
learning previous results
 All previously received allocations a=(p’,q’)
 Closer in value q’ provides more information

 Closer in time allocation a provides more information

 Reserved price pmin is a lower-bound

 A recent pmax-rejected is an upper-bound

• By exclusion-compensation principle

 Valuation p is known for every q
 For forbidden ranges a lower-bound is known

 Get b=(q,r,p) by scanning

for q obtaining highest

utility for guest

RAAS+Ginseng 42

 MPSP maximizes the SW for every guest
 Even for non-concave non-monotonically rising valuations

 By solving optimization problem with affine maximizer, and

 Inspecting recursively all 0-1 allocations of forbidden ranges

 Bidding the true valuation of a memory quantity is the

best course of action for the guest when:
 It asks for a specific quantity (not a range), or

 The valuation function is concave, monotonically rising, or

 The system is at a steady state.

RAAS+Ginseng 43

RAAS+Ginseng 44

×6.2

RAAS+Ginseng 45

×15.8

RAAS+Ginseng 46

 The Resource-as-a-Service cloud is the future cloud

model.

 Ginseng is an efficient prototype implementation of

RaaS for memory. It improves the social welfare by

×6.2 -×15.8.

 Future work
Full multi-resource RaaS machine: the RaaS software stack

Allocation and migration algorithms

Better dynamic game-theoretic mechanisms

Security and Privacy

RAAS+Ginseng 47

Contact: assaf@cs.technion.ac.il

Thank You!

 Ginseng: Market-Driven Memory Allocation. Orna Agmon Ben-
Yehuda, Eyal Posener, Muli Ben-Yehuda, Assaf Schuster, Ahuva
Mu’alem. VEE 2014.

 The rise of RaaS: the Resource as a Service Cloud. Orna Agmon
Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, Dan Tsafrir.
Communications of the ACM. Forthcoming, July 2014.

 The Resource-as-a-Service (RaaS) Cloud. Orna Agmon Ben-
Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir.
HotCloud, June 2012.

RAAS+Ginseng 48

RAAS+Ginseng 49

RAAS+Ginseng 50

RAAS+Ginseng 51

RAAS+Ginseng 52

 The above benchmarks were too short and
were hardly affected by changes in the JVM
heap size.

 Sunflow crushed multiple times on our
machine.

RAAS+Ginseng 53

RAAS+Ginseng 54

 The permanent generation holds
class metadata.

 The young generation holds
recently-created objects, and
those that have survived a few
garbage collections.

 Objects that survive longer are
moved to the old generation.

 The young generation is also split
into Eden and survivor spaces.

 Spaces are bounded by start and
end addresses, and all allocated
memory sits between the start
and top address, which is
incremented as objects are
allocated.

 Collection compacts space
between the start and top
addresses, removing holes and
moving objects to other spaces.

Parallel Scavenge Garbage
Collector

RAAS+Ginseng 55

 The balloon space in the young
generation can grow and increase the
pressure on the Eden space when
necessary, or contract and reduce the
pressure.

 In order to resize the spaces
composing the heap, we need to
compact them and prevent any other
operations during ballooning.

 For this reason, the ballooning
operation is performed at the same
time as a full garbage collection.

 Before returning from a full collection,
we perform all outstanding ballooning
operations.

 This means that the cost for
ballooning operations in the JVM is
influenced by the time needed to
perform a garbage collection.

Balloon Space

RAAS+Ginseng 56

Performance graphs for different JVM
heap sizes

RAAS+Ginseng 57

 Avrora: simulates a number of programs run on a grid of AVR microcontrollers
 Batik: produces a number of Scalable Vector Graphics (SVG) images based on the unit

tests in Apache Batik
 Eclipse: executes some of the (non-gui) jdt performance tests for the Eclipse IDE
 Fop: takes an XSL-FO file, parses it and formats it, generating a PDF file.
 H2: executes a JDBCbench-like in-memory benchmark, executing a number of

transactions against a model of a banking application, replacing the hsqldb benchmark
 Jython: inteprets a the pybench Python benchmark
 Luindex: Uses lucene to indexes a set of documents; the works of Shakespeare and the

King James Bible
 Lusearch: Uses lucene to do a text search of keywords over a corpus of data comprising

the works of Shakespeare and the King James Bible
 Pmd: analyzes a set of Java classes for a range of source code problems
 Sunflow: renders a set of images using ray tracing
 Tomcat: runs a set of queries against a Tomcat server retrieving and verifying the

resulting webpages
 Tradebeans: runs the daytrader benchmark via a Java Beans to a GERONIMO backend with

an in memory h2 as the underlying database
 Tradesoap: runs the daytrader benchmark via a SOAP to a GERONIMO backend with in

memory h2 as the underlying database

 Xalan: transforms XML documents into HTML

RAAS+Ginseng 58

RAAS+Ginseng 59

RAAS+Ginseng 60

RAAS+Ginseng 61

RAAS+Ginseng 62

RAAS+Ginseng 63

RAAS+Ginseng 64

RAAS+Ginseng 65

RAAS+Ginseng 66

RAAS+Ginseng 67

RAAS+Ginseng 68

